Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38444086

RESUMO

MOTIVATION: KaMRaT is designed for processing large k-mer count tables derived from multi-sample, RNA-seq data. Its primary objective is to identify condition-specific or differentially expressed sequences, regardless of gene or transcript annotation. RESULTS: KaMRaT is implemented in C++. Major functions include scoring k-mers based on count statistics, merging overlapping k-mers into contigs and selecting k-mers based on their occurrence across specific samples. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are available via https://github.com/Transipedia/KaMRaT.


Assuntos
Algoritmos , Software , Análise de Sequência de DNA/métodos , RNA-Seq , Documentação
2.
Bioinformatics ; 39(39 Suppl 1): i252-i259, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387170

RESUMO

MOTIVATION: The Sequence Read Archive public database has reached 45 petabytes of raw sequences and doubles its nucleotide content every 2 years. Although BLAST-like methods can routinely search for a sequence in a small collection of genomes, making searchable immense public resources accessible is beyond the reach of alignment-based strategies. In recent years, abundant literature tackled the task of finding a sequence in extensive sequence collections using k-mer-based strategies. At present, the most scalable methods are approximate membership query data structures that combine the ability to query small signatures or variants while being scalable to collections up to 10 000 eukaryotic samples. Results. Here, we present PAC, a novel approximate membership query data structure for querying collections of sequence datasets. PAC index construction works in a streaming fashion without any disk footprint besides the index itself. It shows a 3-6 fold improvement in construction time compared to other compressed methods for comparable index size. A PAC query can need single random access and be performed in constant time in favorable instances. Using limited computation resources, we built PAC for very large collections. They include 32 000 human RNA-seq samples in 5 days, the entire GenBank bacterial genome collection in a single day for an index size of 3.5 TB. The latter is, to our knowledge, the largest sequence collection ever indexed using an approximate membership query structure. We also showed that PAC's ability to query 500 000 transcript sequences in less than an hour. AVAILABILITY AND IMPLEMENTATION: PAC's open-source software is available at https://github.com/Malfoy/PAC.


Assuntos
Bases de Dados de Ácidos Nucleicos , Humanos , Eucariotos , Células Eucarióticas , Genoma Bacteriano
3.
Genome Biol ; 24(1): 133, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264447

RESUMO

It has been over a decade since the first publication of a method dedicated entirely to mapping long-reads. The distinctive characteristics of long reads resulted in methods moving from the seed-and-extend framework used for short reads to a seed-and-chain framework due to the seed abundance in each read. The main novelties are based on alternative seed constructs or chaining formulations. Dozens of tools now exist, whose heuristics have evolved considerably. We provide an overview of the methods used in long-read mappers. Since they are driven by implementation-specific parameters, we develop an original visualization tool to understand the parameter settings ( http://bcazaux.polytech-lille.net/Minimap2/ ).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos
4.
Nat Methods ; 19(4): 429-440, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396482

RESUMO

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Assuntos
Metagenoma , Metagenômica , Archaea/genética , Metagenômica/métodos , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Software
5.
Bioinformatics ; 37(18): 2858-2865, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33821954

RESUMO

MOTIVATION: A plethora of methods and applications share the fundamental need to associate information to words for high-throughput sequence analysis. Doing so for billions of k-mers is commonly a scalability problem, as exact associative indexes can be memory expensive. Recent works take advantage of overlaps between k-mers to leverage this challenge. Yet, existing data structures are either unable to associate information to k-mers or are not lightweight enough. RESULTS: We present BLight, a static and exact data structure able to associate unique identifiers to k-mers and determine their membership in a set without false positive that scales to huge k-mer sets with a low memory cost. This index combines an extremely compact representation along with very fast queries. Besides, its construction is efficient and needs no additional memory. Our implementation achieves to index the k-mers from the human genome using 8 GB of RAM (23 bits per k-mer) within 10 min and the k-mers from the large axolotl genome using 63 GB of memory (27 bits per k-mer) within 76 min. Furthermore, while being memory efficient, the index provides a very high throughput: 1.4 million queries per second on a single CPU or 16.1 million using 12 cores. Finally, we also present how BLight can practically represent metagenomic and transcriptomic sequencing data to highlight its wide applicative range. AVAILABILITY AND IMPLEMENTATION: We wrote the BLight index as an open source C++ library under the AGPL3 license available at github.com/Malfoy/BLight. It is designed as a user-friendly library and comes along with code usage samples.


Assuntos
Algoritmos , Software , Humanos , Análise de Sequência de DNA/métodos , Computadores , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Sci Rep ; 11(1): 761, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436980

RESUMO

Third-generation sequencing technologies allow to sequence long reads of tens of kbp, that are expected to solve various problems. However, they display high error rates, currently capped around 10%. Self-correction is thus regularly used in long reads analysis projects. We introduce CONSENT, a new self-correction method that relies both on multiple sequence alignment and local de Bruijn graphs. To ensure scalability, multiple sequence alignment computation benefits from a new and efficient segmentation strategy, allowing a massive speedup. CONSENT compares well to the state-of-the-art, and performs better on real Oxford Nanopore data. Specifically, CONSENT is the only method that efficiently scales to ultra-long reads, and allows to process a full human dataset, containing reads reaching up to 1.5 Mbp, in 10 days. Moreover, our experiments show that error correction with CONSENT improves the quality of Flye assemblies. Additionally, CONSENT implements a polishing feature, allowing to correct raw assemblies. Our experiments show that CONSENT is 2-38x times faster than other polishing tools, while providing comparable results. Furthermore, we show that, on a human dataset, assembling the raw data and polishing the assembly is less resource consuming than correcting and then assembling the reads, while providing better results. CONSENT is available at https://github.com/morispi/CONSENT .


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Caenorhabditis elegans/genética , Escherichia coli/genética , Genoma , Humanos , Nanoporos , Saccharomyces cerevisiae/genética , Software
7.
Genome Res ; 31(1): 1-12, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328168

RESUMO

High-throughput sequencing data sets are usually deposited in public repositories (e.g., the European Nucleotide Archive) to ensure reproducibility. As the amount of data has reached petabyte scale, repositories do not allow one to perform online sequence searches, yet, such a feature would be highly useful to investigators. Toward this goal, in the last few years several computational approaches have been introduced to index and query large collections of data sets. Here, we propose an accessible survey of these approaches, which are generally based on representing data sets as sets of k-mers. We review their properties, introduce a classification, and present their general intuition. We summarize their performance and highlight their current strengths and limitations.


Assuntos
Algoritmos , Software , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes
8.
Bioinformatics ; 36(Suppl_1): i177-i185, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657392

RESUMO

MOTIVATION: In this work we present REINDEER, a novel computational method that performs indexing of sequences and records their abundances across a collection of datasets. To the best of our knowledge, other indexing methods have so far been unable to record abundances efficiently across large datasets. RESULTS: We used REINDEER to index the abundances of sequences within 2585 human RNA-seq experiments in 45 h using only 56 GB of RAM. This makes REINDEER the first method able to record abundances at the scale of ∼4 billion distinct k-mers across 2585 datasets. REINDEER also supports exact presence/absence queries of k-mers. Briefly, REINDEER constructs the compacted de Bruijn graph of each dataset, then conceptually merges those de Bruijn graphs into a single global one. Then, REINDEER constructs and indexes monotigs, which in a nutshell are groups of k-mers of similar abundances. AVAILABILITY AND IMPLEMENTATION: https://github.com/kamimrcht/REINDEER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Sequência de DNA , Software , Algoritmos , Humanos , Análise de Sequência de RNA
9.
Brief Bioinform ; 21(4): 1164-1181, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31232449

RESUMO

MOTIVATION: Nanopore long-read sequencing technology offers promising alternatives to high-throughput short read sequencing, especially in the context of RNA-sequencing. However this technology is currently hindered by high error rates in the output data that affect analyses such as the identification of isoforms, exon boundaries, open reading frames and creation of gene catalogues. Due to the novelty of such data, computational methods are still actively being developed and options for the error correction of Nanopore RNA-sequencing long reads remain limited. RESULTS: In this article, we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool that not only reports classical error correction metrics but also the effect of correction on gene families, isoform diversity, bias toward the major isoform and splice site detection. We find that long read error correction tools that were originally developed for DNA are also suitable for the correction of Nanopore RNA-sequencing data, especially in terms of increasing base pair accuracy. Yet investigators should be warned that the correction process perturbs gene family sizes and isoform diversity. This work provides guidelines on which (or whether) error correction tools should be used, depending on the application type. BENCHMARKING SOFTWARE: https://gitlab.com/leoisl/LR_EC_analyser.


Assuntos
Nanoporos , Análise de Sequência de RNA/métodos , Software , Éxons , Fases de Leitura Aberta
10.
NAR Genom Bioinform ; 2(1): lqz015, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575566

RESUMO

The error rates of third-generation sequencing data have been capped >5%, mainly containing insertions and deletions. Thereby, an increasing number of diverse long reads correction methods have been proposed. The quality of the correction has huge impacts on downstream processes. Therefore, developing methods allowing to evaluate error correction tools with precise and reliable statistics is a crucial need. These evaluation methods rely on costly alignments to evaluate the quality of the corrected reads. Thus, key features must allow the fast comparison of different tools, and scale to the increasing length of the long reads. Our tool, ELECTOR, evaluates long reads correction and is directly compatible with a wide range of error correction tools. As it is based on multiple sequence alignment, we introduce a new algorithmic strategy for alignment segmentation, which enables us to scale to large instances using reasonable resources. To our knowledge, we provide the unique method that allows producing reproducible correction benchmarks on the latest ultra-long reads (>100 k bases). It is also faster than the current state-of-the-art on other datasets and provides a wider set of metrics to assess the read quality improvement after correction. ELECTOR is available on GitHub (https://github.com/kamimrcht/ELECTOR) and Bioconda.

11.
Nucleic Acids Res ; 47(1): e2, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30260405

RESUMO

Long-read sequencing currently provides sequences of several thousand base pairs. It is therefore possible to obtain complete transcripts, offering an unprecedented vision of the cellular transcriptome. However the literature lacks tools for de novo clustering of such data, in particular for Oxford Nanopore Technologies reads, because of the inherent high error rate compared to short reads. Our goal is to process reads from whole transcriptome sequencing data accurately and without a reference genome in order to reliably group reads coming from the same gene. This de novo approach is therefore particularly suitable for non-model species, but can also serve as a useful pre-processing step to improve read mapping. Our contribution both proposes a new algorithm adapted to clustering of reads by gene and a practical and free access tool that allows to scale the complete processing of eukaryotic transcriptomes. We sequenced a mouse RNA sample using the MinION device. This dataset is used to compare our solution to other algorithms used in the context of biological clustering. We demonstrate that it is the best approach for transcriptomics long reads. When a reference is available to enable mapping, we show that it stands as an alternative method that predicts complementary clusters.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Animais , Genoma/genética , Camundongos , RNA/genética , Análise de Sequência de DNA
12.
Microbiome ; 6(1): 105, 2018 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885666

RESUMO

BACKGROUND: Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic approach to tackle such difficulties and tested it on marine models as a proof of concept. RESULTS: We considered three holobiont models, of which two transcriptomes were previously published and a yet unpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similarity method. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads, symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies for each category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, the separation of each partner's transcriptome offered the independent and comparative exploration of their functional diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited. CONCLUSIONS: In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic challenges and offers bright perpectives to study holobiont systems composed of either well-studied or poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.


Assuntos
Cnidários/parasitologia , Recifes de Corais , Poríferos/microbiologia , Rhizaria/parasitologia , Simbiose/fisiologia , Animais , Biologia Computacional , Microalgas/metabolismo , Plâncton/parasitologia , Transcriptoma/genética
13.
Sci Rep ; 8(1): 4307, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523794

RESUMO

Genome-wide analyses estimate that more than 90% of multi exonic human genes produce at least two transcripts through alternative splicing (AS). Various bioinformatics methods are available to analyze AS from RNAseq data. Most methods start by mapping the reads to an annotated reference genome, but some start by a de novo assembly of the reads. In this paper, we present a systematic comparison of a mapping-first approach (FARLINE) and an assembly-first approach (KISSPLICE). We applied these methods to two independent RNAseq datasets and found that the predictions of the two pipelines overlapped (70% of exon skipping events were common), but with noticeable differences. The assembly-first approach allowed to find more novel variants, including novel unannotated exons and splice sites. It also predicted AS in recently duplicated genes. The mapping-first approach allowed to find more lowly expressed splicing variants, and splice variants overlapping repeats. This work demonstrates that annotating AS with a single approach leads to missing out a large number of candidates, many of which are differentially regulated across conditions and can be validated experimentally. We therefore advocate for the combined use of both mapping-first and assembly-first approaches for the annotation and differential analysis of AS from RNAseq datasets.


Assuntos
Processamento Alternativo , Análise de Sequência de RNA/métodos , Software , Humanos , Sítios de Splice de RNA , Análise de Sequência de RNA/normas
14.
Algorithms Mol Biol ; 12: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250805

RESUMO

BACKGROUND: The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. RESULTS: The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG, and not read nor coverage information. We show that our simple method gives better results than Rsem-Eval (Li et al. in Genome Biol 15(12):553, 4) and TransRate (Smith-Unna et al. in Genome Res 26(8):1134-1144, 5) on both real and simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.

15.
Nucleic Acids Res ; 44(19): e148, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27458203

RESUMO

SNPs (Single Nucleotide Polymorphisms) are genetic markers whose precise identification is a prerequisite for association studies. Methods to identify them are currently well developed for model species, but rely on the availability of a (good) reference genome, and therefore cannot be applied to non-model species. They are also mostly tailored for whole genome (re-)sequencing experiments, whereas in many cases, transcriptome sequencing can be used as a cheaper alternative which already enables to identify SNPs located in transcribed regions. In this paper, we propose a method that identifies, quantifies and annotates SNPs without any reference genome, using RNA-seq data only. Individuals can be pooled prior to sequencing, if not enough material is available from one individual. Using pooled human RNA-seq data, we clarify the precision and recall of our method and discuss them with respect to other methods which use a reference genome or an assembled transcriptome. We then validate experimentally the predictions of our method using RNA-seq data from two non-model species. The method can be used for any species to annotate SNPs and predict their impact on the protein sequence. We further enable to test for the association of the identified SNPs with a phenotype of interest.


Assuntos
Sequência de Bases , Genoma , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Algoritmos , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Marcadores Genéticos , Genômica/métodos , Genótipo , Humanos , Fenótipo , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Transcriptoma
16.
Gigascience ; 5: 9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870323

RESUMO

BACKGROUND: With next-generation sequencing (NGS) technologies, the life sciences face a deluge of raw data. Classical analysis processes for such data often begin with an assembly step, needing large amounts of computing resources, and potentially removing or modifying parts of the biological information contained in the data. Our approach proposes to focus directly on biological questions, by considering raw unassembled NGS data, through a suite of six command-line tools. FINDINGS: Dedicated to 'whole-genome assembly-free' treatments, the Colib'read tools suite uses optimized algorithms for various analyses of NGS datasets, such as variant calling or read set comparisons. Based on the use of a de Bruijn graph and bloom filter, such analyses can be performed in a few hours, using small amounts of memory. Applications using real data demonstrate the good accuracy of these tools compared to classical approaches. To facilitate data analysis and tools dissemination, we developed Galaxy tools and tool shed repositories. CONCLUSIONS: With the Colib'read Galaxy tools suite, we enable a broad range of life scientists to analyze raw NGS data. More importantly, our approach allows the maximum biological information to be retained in the data, and uses a very low memory footprint.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Armazenamento e Recuperação da Informação/métodos , Software , Sequência de Bases , Análise por Conglomerados , Genoma/genética , Genômica/métodos , Dados de Sequência Molecular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...